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An analytical theory is developed for the stability properties of planar fronts of 
premixed laminar flames freely propagating downwards in a uniform reacting 
mixture. The coupling between the hydrodynamics and the diffusion process is 
described for an arbitrary expansion of the gas across the flame. Viscous effects are 
included with an arbitrary Prandtl number. The flame structure is described for a 
large value of the reduced activation energy and for a Lewis number close to unity. 
The flame thickness is assumed to be small compared with the wavelength of the 
wrinkles of the front, this wavelength being also the characteristic lengthscale of the 
perturbations of the flow field outside the flame. A two-scale method is then used to 
solve the problem. The results show that the acceleration of gravity associated with 
the diffusion mechanisms inside the front can counterbalance the hydrodynamical 
instability when the laminar-flame velocity is low enough. The theory provides 
predictions concerning the instability threshold. In particular, the dimensions of the 
cells are predicted to be large compared with the flame thickness, and thus the basic 
assumption of the theory is verified. Furthermore, the quantitative predictions are 
in good agreement with the existing experimental data. 

The bifurcation is shown to be of a different nature than predicted by the purely 
diffusive-thermal model. 

The viscous diffusivities are supposed to be independent of the temperature, and 
then the viscosity is proved to have no effect at all on the dynamical properties of 
the flame front. 

1. Introduction 
Owing to heat release Q ,  the temperature T increases inside a premixed flame of 

thickness d from T-, to Tb. According to a practically isobaric condition, the 
corresponding density decrease from ppa0 to Pb can be expressed in terms of a 
parameter y ,  defined by y = ( p - , - p f ) / p - ,  = 1 - ( T m / T f ) ,  0 < y < 1 ,  describing 
the gas expansion through the flame. The subscripts - 00 and b refer to conditions 
in the fresh mixture and in the local burned gases respectively. Subscript f refers to 
the burned gases in the case of planar and adiabatic flames, i.e. Tf = T-, + Q / C ,  where 
C is the specific heat of the mixture. When the activation energy E of the chemical 
reaction is large, p = (E/RT,) (Tf - T-,/T,) > 1 ,  the reaction takes place only in a thin 
zone of vanishing thickness d / P  located close to the maximum of temperature Tb, 
while the combustion rate is a strongly increasing function of the temperature of 
combustion Tb. In the planar case, the gradients of the temperature and of species 
concentration are oriented only in the direction perpendicular to the front, and the 
temperature of combustion is equal to Tf .  The thickness d and the velocity uL of the 
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front are determined by a simple balance of the corresponding fluxes of heat and mass 
with the chemical production characterized by the reaction time 7,: 

where Dth is the thermal diffusivity of the gas mixture. For a wrinkled front, the 
transverse gradients modify the local balance of energy and affect the temperature 
of combustion so that Tb 4= T,, and the local velocity u of the front is also modified, 
so that u + uL. Thus the dynamic behaviour of a wrinkled front must depend on the 
diffusive and convective transport of energy and mass, which control Tb. 

However, apart from these transport mechanisms occurring inside the flame, the 
motion of a wrinkled front depends also on hydrodynamical effects that are developed 
on a scale larger than d (see figure 1 ) .  In  fact, the combustion rate controls only the 
front velocity u relative to the local upstream flow velocity u - ~ ,  which produces a . 
convective displacement of the front. However, owing to hydrodynamics, the 
upstream flow field u-, is itself modified by the wrinkling of the front on a distance 
of the order of magnitude of the wavelength A of the wrinkles. Thus a feedback 
mechanism is developed in the motion of the wrinkled fronts where hydrodynamic 
effects are coupled to the transport processes taking place inside the flame. The origin 
of this feedback lies in the fact that the gas expands through the flame thickness 
y + 0, and so the conservation of mass and momentum causes a deflection of the 
streamlines of the gas flow at the tilted front. This local deflection induces a 
modification of the flow, which, as a consequence of negligibly small Mach number, 
can be considered as instantaneous and essentially incompressible. To point out the 
typical difficulty involved in the study of the dynamic properties of a wrinkled front, 
let us recall that this coupling between hydrodynamics and transport processes is not 
involved in the calculation of the steady and unidimensional basic solution where the 
planar front, perpendicular to a uniform flow (with a velocity equal to uL), is not 
affected by any deflection of the streamlines. The solution for this freely propagating 
planar flame, which is characterized by ( l ) ,  has been obtained a long time ago by 
Zel'dovich & Frank-Kamenetzki (1938). However, for non-steady wrinkled fronts the 
above-mentioned coupling causes great difficulties in analytical studies, and, to the 
best of our knowledge, a complete and satisfactory analytical solution of the stability 
of the planar flame has not yet been obtained. 

It is the purpose of the present work to provide such an analysis on the basis of 
recent results of Clavin & Williams (1982) (referred to hereinafter as I).  Attention is 
focused on a realistic situation where y is not small. In this case, according to the 
pioneering studies of Darrieus (1938) and Landau (1944), the hydrodynamic effects 
are known to be of particular importance because they produce a strong mechanism 
of instability of the front, which leads one to question the physical relevance of the 
basic planar solution. The method employed in the present study is based on the 
difference of scale between the flame thickness d and the relevant wavelengths A; 
e = d / A  < 1.  A two-scale method is used that identifies the scale d for the longitudinal 
variation in the temperature and the scale A for the transverse variation. The flow 
is then separated into two parts: a far flow field, which varies on scale A, and the 
flow inside the flame thickness, which varies on scale d. This method allows us to 
obtain local relations between the flame velocity and the characteristic properties of 
the far flow field at the front. Thus it is shown, as was anticipated in the pioneering 
studies quoted above, that the problem is reduced to the solution of an incompressible- 
flow problem outside the flame thickness with boundary conditions specified on both 
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sides of the front. The final result is sensitive to these boundary conditions, which 
can be specified only by a detailed analysis of the structure of the wrinkled flame. 
Such an analysis is completely absent not only in the first studies mentioned above 
but also in the more recent phenomenological description reported in Markstein (1964) 
and in Zel'dovich et al. (1980). The phenomenological boundary conditions used there 
limit the validity of the final result. Even in the simplifying approximation y = 0 
it is only recently that the structure of the wrinkled front has been completely 
described by Sivashinsky (1977a) and by Joulin & Clavin (19791, who have used an 
asymptotic expansion in j3-+00 for solving the purely thermal diffusive model 
introduced and first studied by Barenblatt, Zel'dovich & Istratov (1962). When the 
gas expansion is retained, y =!= 0, this local structure is not only of a diffusive nature 
but also involves transverse convective transport, which evolves within the flame as 
a consequence of the expansion. I n  addition to the hydrodynamic instability 
described by Darrieus and Landau, which is associated with a longitudinal convection, 
the modification of the flame structure by the transverse convective transports is a 
supplementary effect of the gas expansion. This particular aspect has been partially 
solved in I, where it is shown how the flame structure can be determined for small 
values of e = d / A  for any arbitrary expansion, 0 < y < 1 .  I n  this case the front is 
only weakly wrinkled and the deflection of the streamlines produces only weak effects 
on the flame structure even for strong expansion ( y  - 1 ) .  But the corresponding 
modifications are found to  be of the same order of magnitude as the diffusive effects. 
The study of Clavin & Williams (I) was concerned primarily with the establishment 
of the local equation for the evolution of the front expressed in terms of the value 
of the upstream far-flow velocity a t  the front, which is considered as a given quantity. 
I n  the present paper we are concerned with the calculation, in the laminar case, of 
this flow field produced by the wrinkling of the front. In  contrast to I, where the 
determination of the local temperature of combustion Tb is sufficient, the flow 
calculation requires further computations of the jump conditions across the flame for 
flow velocity and pressure. These relations are derived in 53, and associated with the 
evolution equation of I they constitute the boundary conditions necessary to solve 
the fluid-mechanical problem involved in the study of the front stability developed 
in 54. As reported in the review monograph of Markstein (1964), the size of the cellular 
structures appearing at the instability threshold of premixed flames are observed to 
be large ( -  1 cm) compared with the flame thickness d ( N em) for most of the 
reactive mixtures he studied. Thus the perturbation analysis in small values of 
e = d / A  used herein is expected to be good for the study of the limit of stability of 
planar flames. 

As suggested by Landau (1944) for the combustion of liquids and by Einbinder 
(1953) in gases, the hydrodynamical instability can be damped out for all wavelengths 
when the acceleration due to gravity g is added to the transport mechanisms. The 
corresponding criterion is that  the Froude number F = uE/( 1 - y )  gd, must be smaller 
than some critical value F,. This corresponds to the experimental observations (see 
Lewis & von Elbe 1961, p. 390; Markstein & Somers 1953), which show that it is only 
for slow-burning flames that planar freely propagating fronts can be stabilized, in 
a uniform laminar flow, provided that they propagate in the downward direction. 
The expression for Fc is derived in this paper in terms of the thermal expansion y 
and of the diffusive properties of the reactive mixture. The corresponding instability 
threshold is predicted by this expression for F, to be experimentally observable in 
usual hydrocarbon-oxygen mixtures diluted by nitrogen when the flame velocity uL  
of the planar front is between 5 cm/s and 17 cm/s. This threshold is also predicted 
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to concern only the wavelengths close to  A, = nu:/( 1 - y )  g ,  and to  correspond to a 
fuel-rich composition for slow-burning flames and to a lean composition for fast 
flames. This is in qualitative and quantitative agreement with the experimental 
results reported by Markstein (1951,1964) concerning slow-burning freely propagating 
flames. The predicted bifurcation is of a different nature than those described 
previously, either by the phenomenological theory of Markstein (1970) or by the 
purely thermal-diffusive model studied by Sivashinsky (1977a) and by Joplin & 
Clavin (1979), even when the modifications proposed by Matkowsky & Sivashinsky 
(1979) are introduced to take into account the acceleration due to gravity in the 
presenqk of a negligible expansion. 

In  addition to the considerations concerning the acceleration due to  gravity, the 
results obtained here provide the two first orders in the development in powers of 
c of the exact dispersion relation associated with the instability of the basic planar 
solution,? the first term corresponding to  the analyses of Darrieus and Landau. 

The viscous effects cannot be neglected inside the flame, since the Prandtl number 
is of order unity. Nevertheless, i t  turns out that  for temperature-independent 
diffusivities the viscous effects balance themselves, and do not play any role in the 
dynamical properties of the flame front. A similar result has been independently 
obtained by Frankel & Sivashinsky (1982). This clarifies the controversy concerning 
the stabilizing or destabilizing influence of viscosity reported, for example by 
Markstein (1964) and by Zel’dovich et al. (1980). 

The mathematical formulation is given in $2. The analysis is presented in $3, which 
can be omitted in a first reading. I n  $4 the results are discussed and compared with 
the previous studies. A quantitative discussion and the concluding remarks are 
presented in $5 .  

2. Formulation 
The flame model is identical with that of I, and the formulation is similar. The 

reader is referred to  I for more details. Slight modifications are introduced here to  
take into account the acceleration due to gravity. Furthermore, the laminar character 
of the upstream flow and the linearization appropriate to the stability analysis 
introduce further simplifications. 

Attention is restricted to  an  overall exothermic reaction controlled by one limiting 
reactant. An Arrhenius rate is adopted with a large activation energy p $ 1 ; d and 
d/uL are the units of length and time respectively, x = a ( y ,  t )  defines the location of 
the reactive zone and the moving coordinates1 6 = x-a,  1 = q, r = t are introduced, 
r = p / p - ,  denotes the density ratio, U and u are the non-dimensional longitudinal 
(s-direction) and transverse (y-direction) components of the flow velocity. The 
subscript L refers to the one-dimensional steady-state solution, and the non- 
subscripted variables refer to  the perturbation. The linearized versions of the 
conservation equations are written in the moving system of coordinates; we introduce 

t According to Zel’dovich (1981) there may exist steady but non-planar flame fronts propagating 
in tubes, which could be intrinsically stable with respect to hydrodynamical effects. In such cases, 
which are beyond the scope of the present paper, the stability analysis is expected to be of a different 
nature. Such a situation cannot be excluded also for planar fronts in ‘curved flows’ such as a 
stagnation-point flow. 

1 In order to simplify the notation, only one transverse coordinate is specified. 
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where rL = 1 ,  U ,  = 1 ,  r = 0, U = 0 when t-+ - 00. Here s identifies the non- 
dimensional longitudinal mass flux in the moving coordinate system. The mass 
conservation gives sL = 1 for the steady-state solution and 

for the perturbation. 
Energy conservation is written with the non-dimensional temperature 

o = (T- ! rW)/ (q-  Tm). 

When the Mach number M = Go- uE/p-,]i is negligibly small, the conservation of 
energy outside the reaction zone gives 

et (t < 0, 
1 ( t > O )  

for the steady-state solution and 

for the perturbation, with the boundary conditions 

e = o  (t +q, 
o = o  ( t + + c o ) .  

r is obtained from the solution of (4) by using the nearly isobaric conditions ( M  < 1 )  

to give €or the steady-state solution 

and r = - (y/(l - y ) )  r;@ for the perturbation. 
Outside the reaction zone, species conservation gives 

and 

with + = o  ( t+ -co ,  t > O ) .  
I n  (4) and (6) the thermal and molecular diffusivities have been considered as 

temperature-independent. The Lewis number L is defined by L = Dth/Dmo,, where 
Dmol is the molecular diffusivity of the reactive species that is in deficit, so that it 
controls the reaction rate. 

Following Joulin & Clavin (1979) ,  whenever the reduced activation energy p of the 
exothermal reaction is large, the chemical production is located at t = 0 in a thin 
reaction zone of thickness d / P  and this production term induces jump conditions for 
the space derivative of + and 8 :  
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$ ( E  = 0) = 0 defines the origin (6 = 0 )  and O(< = 0 )  = O(l/,8). These relations are 
valid asymptotically in the limit @ +  co up to 0(1/B) with the restriction 
1 - 1/L = O(l/p). This is not too restrictive for gaseous mixtures where the Lewis 
number is close to one. I n  this case by inspection of (4) and (6), the difference $-O 
appears to be of order 1/p and O(e = 0) is seen to be proportional t o  1 - 1/L in such 
a way that the relevant parameter of order unity in the limit /3 + co is 1 = p( 1 - l /L).  
In  the following, unless explicitly specified, all the quantities should be understood 
as being O( 1 )  in the limit as p + GO. Furthermore, a t  order e2, as will be explained 
later, (4) and (6) reduce to quasi-planar and quasi-steady equations, aO/ar, a20/av2, 
a$/ar, a2$/av2 = o(e2) ,  and thus can be solved very easily in terms of s and d2a/aT2. 
Then, by prescribing the boundary condition (7),  one obtains an integral relation for 
s(,O which, a t  this order e2 reduces to 

At this stage let us outline the method. As soon as v is known inside the flame 
thickness d,  a direct integration of (3) gives the variation of s through d ,  and (8) 
provides its upstream value (5 +- co). Then, s being completely known inside the 
flame thickness, (2) gives the flame velocity relative to  the upstream flow as well as 
the modification to the longitudinal gas velocity U inside d .  For the planar solution 
where sL = 1 and U,(t) = l /rL one has 

(9a) 

(9 b)  

The non-dimensional pressure, i.e. the ratio of the pressure to its value in the fresh 
mixture, is denoted by 1 + M2p.  p is given by solving the longitudinal momentum 
equation, which, when the viscous diffusivities are supposed temperature- 
independent, can be written as 

(10) 
with p = 0, U = 0 as (+-a. 

for P L ( t )  : 
The pressure in the steady-state solution is given by the corresponding equation 

with p ,  = 0, IT, = 1 as 6 -+ - co : P and P are the Prandtl numbers based on the first 
and second coefficients of viscosity respectively. 

B is given by the transverse component of momentum conservation : 

(12) 
with v = 0 as <-+-a. 

The momentum equations (10) and (12) are valid everywhere in the gas flow, and, 
since they do not contain the chemical-production term, the jump conditions through 
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the reactive zone concerning p ,  U and 1, are obtained directly on integration over this 
zone. Because U and v are continuous on the reactive zone, it is found that 

(13c) 

The system of linear equations (3), (4), (6), (lo), (12) with the jump conditions (7) 
and (13) is solved by perturbation in E = d/A, up to the second order 8, by using, 
as explained in $2, a two-scale method. All the transverse derivatives a/dq are by 
definition of order E .  Inside the flame the longitudinal derivative 8/86 is of order unity. 
Outside the flame, 8 and $ are constant (at the dominant order in the asymptotic 
limit p -P co), and, the spatial scale in the variation of the flow field being A, the spatial 
derivatives, including 8/86, are of order E .  Furthermore, as is shown by the analyses 
of Darrieus and Landau, the reduced flow perturbation has an intensity of order E 

and the evolution is on a reduced timescale of order 1 / E ,  a/at = O ( E ) .  Thus, according 
to (3), as/a( = O ( E ~ )  inside the flame, and, according to (4) and (6), 8 = O(e2) ,  
$ = O ( E ~ ) .  So, as was anticipated in writing (8), the equations (4) and (6) appear to  
be quasi-steady and quasi-planar at order e2, Additionally, one introduces G = O(l) ,  
defined by 

The reason is that the critical wavelength A, is predicted by a phenomenological 
analysis to  be given by A, = nut/( 1 - y )  9, which greatly exceeds the flame thickness 
d as soon as uL > 5 cm/s. Furthermore, the final result will show that for very slow- 
burning flames uL < 5 cm/s, and for the diffusive properties of the usual reactive 
components the front is always stable, so that (14) can be used in the stability analysis 
without loss of generality. 

3. Analysis 
The flame position is developed in powers of E :  

a = ao(Y,T)+Eal(Y,T)+o(e) (15) 
where Y = €7, T = €7. I n  addition to the reactive zone of thickness d /P ,  which is 
completely described by the jump conditions (7) and (13), three more zones are 
considered: the thermal diffusive zone of thickness d ,  and, outside, the two hydro- 
dynamical zones, denoted by the subscripts - co and + co for the fresh mixture and 
the burnt gas respectively (see figure 1).  I n  these two hydrodynamical zones of 
thickness A the temperature and the concentration are constant, and the solutions 
are written in the form 

(16) 1 u*, = EU+,(X, y ,  TL v + m  = CV*,(X,  Y ,  T), 
p k m  = €P*,(X, y ,  T), s*, = SS*,(X, y ,  TI, 

$*m = o , ,  = 0, 

where X = E X ,  Y = €7, T = M. Further, rL = $L = 1 , O L  = 0 and ap,/aX = -Gin the 
upstream zone - co, and rL = 1 - y ,  $L = 0,8, = 1 and @,/ax = - ( 1  -7 )  G in the 
downstream zone + m. 
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FIGURE 1. The streamlines associated with a wrinkled front. In the region convex towards the 
fresh mixture, U - ,  < 0. In order to restore a relative velocity equal to the local flame velocity 
uy,, the front moves toward the fresh mixture, producing the hydrodynamical instability. However, 
in this region the transverse convection induced by the deflection of the streamlines enhances 
the transverse heat diffusion, thus decreasing the local temperature of combustion Tb. This 
mechanism, which produces a lowering of the local flame velocity, enhances also the stabilizingeffect 
of the diffusion. 

The approximation ( 5 )  associated with (16) implies that  r, ,  = 0, and thus these 
two zones are simply controlled by incompressible fluid mechanics : 

( 2 )  * s,, = (1 - y )  (u,, - $), s-, = (u, - $) , (17a, b )  
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Using the normal-modes decomposition 

' ) (18) 
= g e i K Y + Z T  3 U + m =  qJ &cc (x) eiKI'+ZT , Vk , = 9" +m (S) e iKY+ZT 

P+, = - ( 1 - y )  aG + 8, , ( X )  e i K Y + Z T ,  P-, = - aG + 9t , ( X )  eiKY+ZT, 

and assuming bounded values everywhere for C > 0, the solution of the system (17) 
can be written in the following form: 

8 + , ( X )  = 8+m(0)e-KX,  8-,(X) = 8 - , ( 0 ) e + K - y ,  
1 - [1+ 4€P(( 1 - y )  C +€PK2)]+ 

2€P 
K a+ , (x)  = szi exp { Xl+(l-y)C-K ~ + m ( 0 )  e P K X ,  

These linear solutions are valid a t  all orders of the development in powers of E .  Notice 
that there is another root on the - co side that does not appear in (19) because i t  
corresponds to  an exponential decrease on the x-scale of the preheated zone of the 
flame. 

The four constants of integration, W, d and 8*,(0), have to be determined 
afterwards. I n  order to carry out this determination, the flame structure has to  be 
investigated to provide the jumps through the flame thickness, P+ ,(O) - 8 - , ( O ) ,  

(0) -@-, ( O ) ,  $2, (0)- $1, (0). This will be done up to  the second order in the 
development in powers of c. 

In  the third zone, corresponding to  the preheated zone of the flame, the solutions 
are written in the following form: 

(20a) 

(20b) 

(20 c) 

( 2 0 4  

(20e) 

(20J 9)  

u= €U-,(€X, Y,T)+€?i1(& Y,T)+E2G,([, Y,T)+0(E2),  

'u = €V-,(€2, Y,T)+€G,([, Y,T)+€2d2(6, Y,T)+o(?), 

p = €P-,(€xX, Y,T)+@i(<, Y,T)+e2@2(f, Y,T)+o(e2) ,  

s = ES-,(EZ, Y,T)+eB,([, Y,T)+e2d2([, Y,T)+o(e2) ,  

0 = e262(g, Y ,  T)+0(E2), 11. = €2g2(& Y, T)+o(c2) ,  

PL = PLO(5) + %1(L Y ?  

where d2(E = 0) = O(P-'),  and thus should be considered as zero. Furthermore, all 
the quantities ~U- , (ex) ,  ~ V - , ( E Z ) ,  eS-,(m), eP-,(sx) have to be developed in powers 
of F .  

.--, - co , all the quantities tagged with 
the circumflex go to zero like fnet .  Thus the expressions (20) valid in the preheated 
zone are automatically matched with expressions (16) corresponding to  the upstream 
hydrodynamical region labelled by - 00. 

It will be shown in the following that, when 

The solution of (3) gives directly 
8, = 0, (21 a )  
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When the first orders of s given by (21) are introduced in (8) one obtains, at the order 
E ,  S-,,,(X = 0) = 0 for 6 4  - 00, which gives, according to (15) and (17b). 

(22) a 3  - - U-,,o(X = 0).  
aT 

Then (2) and (10) give 
B, = 0, ,jjl =o .  

Then, using (9), a direct integration of (12) provides the expression for 6, : 

where the last jump condition of (13) has been used to  determine the constant of 
integration. When the result (23) is introduced in (21), an expression ford, is obtained, 
and (8) with (20) leads to  the expression for S-,(X = 0). One obtains 

where 

with 
~ x x - ~  In (1 +z). 

= Joy’(l-y’ 
Recalling that 6,(c = 0) = O(P-’), (2) specifies the value of B,(g = 0) 

1 
B,([ = 0) = ~ X-,,(X = 0) +- d& = 0).  

1 - Y  1-Y 

The integration of the order I? of (10) yields the value of f 3 2  : 

(27) and the integration of (12) provides the value of G2(( = 0) : 

where the jump conditions (13) through the reactive zone have been used to determine 
the constant of integration. 
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4. Results and discussion 
The definitions (20) and the results (22)-(28) specify the boundary and jump 

conditions across the flame up to the order e2, providing the necessary information 
for the solution of the hydrodynamical problem (17), (19). To begin with, let us 
consider the modification of the flame velocity obtained from (22), (24a) by using 
the definitions (16) and (176):  

aa 
- = u-,(X = O)-s-,(X = O),  
at 

associated with the following modification Tb - Tf of the temperature of combustion : 

where 2 / d  and D ( y )  are given by (25a, b) .  
Equations (29) and (29’) are valid in the limit p +co for 1 - L = O(b-l) ,  and 

correspond to  the linearized version of the result obtained in I. u-,(X = 0 )  represents 
the convective effect upon the flame movement produced by the modification of the 
upstream gas flow induced by the front wrinkling. This was the only effect retained 
in the early analyses of Darrieus (1938) and Landau (1944), where s-, was set equal 
to zero. s-,(X = 0) represents the change of the front velocity relative to the 
upstream gas flow produced by the modification of the flame structure involved in 
the front wrinkling. Such a modification was first introduced by Markstein (1951) 
through a phenomenological relation 

aa - Y Y  
- -u-,-- - > o ,  
at R ’  d 

where 1/R is the curvature of the front, which, in the weakly curved case, is 
approximated by - (a2a/dy2)  d-l. Except for a supplementary term du_,/axl,,,, 
which will be commented on later in the paper, (29) is similar to (30), and provides 
the expression of the ‘Markstein phenomenological length ’ 2. This modification of 
the flame structure is produced by the transverse diffusive flux of mass and energy 
appearing when the front is wrinkled, and is also affected by the corresponding 
transverse convective flux produced by the deflection of the streamlines. This last 
effect disappears when the gas expansion is neglected, y = 0, as in the purely 
‘diffusive-thermal’ model first studied by Barenblatt et at.’ (1962). I n  this case, the 
hydrodynamical effects also disappear completely, u-,(X) = 0, and the equation (29) 
for the evolution of the front reduces to a simple diffusion equation 

given by (25a) for y = 0. These results, valid in the limit p+co for 
1 = p( 1 - 1/L) = O( l ) ,  are in agreement with that of Barenblatt et al. (1962) and can 
be easily interpreted from a physical point of view (Clavin 1982). The term 1 in (32) 
represents the contribution of the thermal relaxation of a wrinkled front associated 
with a constant value of the maximum of the temperature of combustion. The second 
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term on the right-hand side of (32) describes the effect of the modification of the flame 
velocity induced by the change of the temperature of combustion resulting in the 
competitive diflusion processes of heat and mass developed in the transverse direction 
by the front wrinkling. Further analytical studies of the ‘diffusive-thermal ’ model 
have been recently carried by Sivashinsky (1977a) and by Joulin & Clavin (1979) to 
get a better understanding of the dynamical properties of the front. One of the 
motivations for these works was that,  according to (32), the diffusion coefficient 21d 
in (31) may easily change sign for the diffusive properties of the usual rich reactive 
mixture, providing an interpretation of the instability threshold for the appearance 
of the cellular structures. But, when the transverse convection is taken into account, 
the result (25a) shows that L?/d can no longer easily reach zero, and indeed is strictly 
positive even for the lightest limiting component involved in the usual reactive 
mixtures (an exception is possible for hydrogen). Thus, in agreement with the 
assumption (30) used by Markstein but contrary to the prediction of the ‘diffusive- 
thermal model’, the modification of the flame structure by the front wrinkling 
produces, for the usual hydrocarbon reactive mixtures, a stabilizing effect ( 2 / d  > 0). 
Nevertheless, this ‘ diffusive-thermal model ’ is still interesting, because i t  allows us 
to investigate the diffusive phenomena in the complete range of wavenumbers (the 
assumption E < 1 is not necessary). Thus, for example, an interesting diffusive 
mechanism of instability leading to travelling waves has been pointed out by 
Sivashinsky (1977a) and Joulin & Clavin (1979) for lean mixtures of heavy 
hydrocarbons. 

A comparison between (29) and (30) reveals that ,  as shown previously in the 
study of Eckhaus (1961), it  is not only the curvature of the front that  is involved 
in the modification of the flame structure, but also the quantity au-,/ax, which is 
related to the inhomogeneities of the upstream flow. This effect has been known for 
a long time to exist, and i t  was referred to as the ‘Karlowitz effect’ in the traditional 
literature of combustion (see e.g. Lewis & von Elbe 1961). Eckhaus (1961) interprets 
(29) as the curvature of the front relative to the deformation of the streamlines. The 
recent result by Clavin & Joulin (1982), concerning the nonlinear case of finite 
amplitudes of deformation, provides the precise formulation of this effect, which is 
shown to be more complex. 

It is clear from (29) that  the complete description of the dynamical properties of 
the front requires the solution of the purely hydrodynamical problem for determining 
the modification of the upstream flow field u-,(X), W-~(X). This was tentatively 
undertaken by different early analytical studies, for example those of Eckhaus (1961), 
Chu & Parlange (1962), Maxworthy (1962) and Istratov & Librovich (1966). However, 
in the absence of a systematic technique to solve the structure of the wrinkled flame, 
these analytical studies lead to results that  are contradictory and not completely 
satisfactory. For example, they do not reduce, in the limit y = 0, to the rigorous result 
expressed by (31) and (32). More interesting is the work of Sivashinsky (1977b), but 
this is exact only for small values of y. There is also an intermediate study by Lazarev 
& Pleshanov (1980), in which an incomplete analysis of the flame structure is carried 
out in such a way that the solution requires the introduction of a phenomenological 
relation such as (30), but in which the ‘Karlowitz effect ’ is overlooked. More relevant 
are the results obtained by Markstein (1964) in his early phenomenological analysis, 
in which the study of the flame structure is not addressed a t  all, but is replaced by 
relevant phenomenological relations on the flame front considered as a surface of 
discontinuity. On both sides of the front, the flow is treated as in the pioneering works 
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of Darrieus (1938) and Landau (1944) in the inviscid and incompressible 
approximation. 

Here, the problem is completely solved analytically for small values of e = d / A  up 
to order e2, but for an arbitrary gas expansion y and for arbitrary Prandtl numbers. 
It is proved that the problem is reduced, effectively, to solving for an incompressible 
flow in the two hydrodynamical zones, with the boundary and jump conditions 
determined by the analysis of the flame structure of $3. I n  fact, Markstein (1964) 
used a phenomenological relation similar to (29), which is proved here and in I to 
be exact to order e2, but the jump conditions used for the pressure and the flow field 
were incomplete. 

Thus (26) gives the jump condition, through the flame thickness, for the longitudinal 
flow velocity : 

The first term [y/(l - y)] Z / d  corresponds to  the modification of the longitudinal 
velocity associated with a constant value eS-,(S = 0) of the longitudinal mass flux 
across the flame. This term is the only one appearing in the semi-phenomenological 
analysis of Markstein (1964) (see also Zel'dovich et al. 1980). But an additional term 
appears in (33), corresponding to  the modification d of s produced by the transverse 
convection due to the deflection of the streamlines through the flame thickness. 

Equation (27) lead to the modification of the pressure through the flame thickness : 

The first term corresponds to  the linearized Bernoulli law associated with (33). Only 
a part of this term was retained in the phenomenological analysis mentioned above. 
Among the additional terms, [y/(l - y)] d2a/dy2,  which produces an effect similar to 
surface tension, will be seen to be one of the most important. According to  (is), the 
jump condition associated with e 9 + ,  is obtained by adding -qGa  to  (34). Finally, 
(23) and (28) specify the jump conaition for the transverse velocity: 

Y aa at,- 
.+,(O)-K,(O) = ---+P(%--=) as x=o 

1 - Y  aY 

+ [ av-, g = 0) a2a 

atay 
1 

+-+G- 1n-+o(e2). (35) 

When the solutions (19) are introduced into (29), (33)-(35), the four constants of 
integration W, d, P+(O) are given by the solution of four homogeneous linear 
equations. I n  order to obtain a non-trivial solution the corresponding 4 x 4 determ- 
inant must be zero. This leads to the following dispersion relation: 

A(k)fT2+B(k)cr+C(k) = 0, (36) 
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where u = E Z ,  k = sh', and where the coeEcients A ,  B, c! are given by 
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B = 2 k +  -----ln--]k2, 2 2  2 1 
[ l - y d  l - y  l - y  

1 + EG( 1 - y )  (--- In L)] 
1-Y d Y 1-Y 

. (37c) 

Equations (36) and (37) correspond to the three first orders of the expansion in E of 
the exact dispersion relation. 

The first point of interest is that the Prandtl numbers P and P do not appear in 
the final result (361, (37). This is surprising, because they are present at  all the stages 
of the calculation, and the cancellation mechanism is by no means trivial and has 
not yet received a simple physical interpretation. For example, the viscous effects 
inside the %herma1 diffusive zone, described by the term 

of (34), are exactly counterbalanced in the last term C of the dispersion relation (36) 
by the viscous effects inside the reactive zone described by (13a,  b) ,  which induces 
the term 

of (34). Thus, when the diffusivities are supposed to be temperature independent, the 
dynarnical properties of the flame front are found to be not affected at all by the viscous 
eflects. This result answers the open question concerning the influence of the viscosity, 
which was found to be stabilizing by some authors and destabilizing by others (see 
Markstein 1964, 1970). 

It is interesting to rewrite the coefficient C of (36) in the following form: 

C=- l l - -k [ :k ,  1-Y -k(6 -;)I, 
gravity hydrodynamics diffusion 

where k, varies with the flame speed according to 

gd E ,  = 2(1 -  y )  -, 
u2L 

(39) 

and where k, depends on the equivalence ratio of the reactive mixture through the 
Lewis number L appearing in 2 / d  (25),t 

t Far from the stoichiometric composition, L is defined with the binary molecular diffusivity 
of the limiting component (oxygen in the rich mixtures, fuel in the lean ones) in the neutral 
component (nitrogen in the air). As the analysis of Joulin & Mitani (1981) has shown, for mixtures 
close to stoichiometric composition, L appears t o  be a function of the equivalence ratio (ratio of 
the amount of fuel to the amount of oxygen) such that L varies continuously from its value based 
on the oxygen for rich mixtures to its value based on the fuel for lean mixtures. 
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9d 9 1  
S =  l + - ( i - y )  ---In- 

u2L ( d  y l - y  
k, = [ 1 + - ( 9 / d ) - - h L ) ]  2+Y 2 -1 

y 1-Y Y 

where the second term of 6 can be easily neglected compared with unity because its 
numerical value is of order in the range of interest for the flame velocity 
(uL > 5 cm/s). For ordinary reactive mixtures k, is positive, making the diffusion 
a stabilizing mechanism. 

When the acceleration of gravity is not considered, the dispersion relation ( 3 6 ) ,  (37)  
reduces to an expression similar to  the one obtained in the inviscid approximation 
by the phenomenological wcrrk of Markstein (1964), but where supplementary terms, 
involving In ( 1 -  y ) - l ,  appear in A and in B. Furthermore, the expression (40) for 
k, is slightly different from k,  = ( [ ( 2 +  y ) / y ]  9 / d ) - 1  obtained by Markstein. The 
additional terms, involving In (1 - y ) - l ,  come from the modification of the longitu- 
dinal mass flux s associated with the transverse convection produced, inside the flame 
thickness, by the deflection mechanism of the streamlines. The supplementary term 
1 in the denominator of (40)  comes from the additional 'surface-tension effect' 
already mentioned in (34) .  Without the acceleration of gravity, k, = 0, and there is 
always a range of unstable wavenumbers located around zero. This can be clearly 
understood because, as the pioneering works of Darrieus (1938) and Landau (1944) 
have shown, the hydrodynamical instability produces in (38)  a k2 term. The 
stabilizing diffusive effects being associated with a k3 term, they cannot overcome 
the hydrodynamical instability near k = 0. As Markstein (1970) pointed out himself, 
this cannot explain the existing experimental results, which show that the cellular 
structures fade away at an intrinsic size independent of the dimension of the burner. 

Because of a mechanism similar to the gravity waves, the acceleration due to 
gravity in flames propagating downwards induces a positive k term in C. Thus the 
criterion of stability given by C > 0 can possibly be satisfied for all wavelengths 
provided the acceleration due to gravity and the diffusive effects are strong enough. 
Thus,  infinite planar fronts of slow-burning flames associated with a limiting component 
suflcientby heauy are predicted to be stable when they propagate downwards. 

The critical stability condition is given by 

k, = 2k, (41 1 
where k, and k, are given by (39)  and (40)  respectively. 

For k, > Zk, the instability occurs only for a finite range of wave vectors centred 
on k, and vanishing a t  the critical condition (41). This unstable domain is limited 
by the two marginal wavenumbers k ,  - given by 

k ,  = ! j k , k k c ( l - 2 ) ' .  

Using (39) ,  (40) and (25)  the critical stability condition is presented in figure 2 on 
the plane (uL, L )  for different values of y .  These curves are universal and can be used 
for any flame. The parameter L is directly related to the equivalence ratio, and the 
flame velocity uL is controlled in the experimental situation by the composition of 
the reactive mixture, including the dilution but also the equivalence ratio. For each 
specific reactive mixture, the transcription of the limits of stability on the usual plane 
(equivalence ratio, dilution) is straightforward as soon as the dependence of the 
burning velocity of the mixture studied is known. 
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FIGURE 2. The limit of stability is plotted on the plane (1 = p(1- l / L ) ,  uL) for two values o f p D / p - ,  
corresponding to the fresh mixture, 0 2  cmz/s, and the burned gases, 0 4  cm2/s. This last curve is 
expected to be the more relevant because the reaction zone is a t  the temperature of the burned 
gases. The effect of the temperature dependence of pD is described by Clavin & Garcia (1982). The 
two figures correspond to different values of the gas expansion, y = 0.75 and 0.8, which are realistic 
for conventional hydrocarbon flames in the range of flame velocities considered. FGr hydrocarbons 
heavier than oxygen, t'he lean mixtures correspond roughly to higher valuesof1, I > 1 ,  and the rich 
t o 1 < 1 .  

The present analysis is limited to  the range of small values of k .  According to (39), 
the critical value k, is effectively found to be small as soon as uL is large enough 
(uL > 5 em). For lower flame velocities the experimental values of k, corresponding 
to the usual reactive mixtures are expected to  be smaller than the corresponding value 
of 2k,. Such flames are thus predicted to be stable a t  any composition. Thus the limits 
of stability predicted by the present study is found to  cover all the range of the usual 
reactive mixtures. 
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5. Concluding remarks 
The analytical study developed here provides a rigorous description of the coupling 

between the hydrodynamical and diffusive effects occurring in the dynamical 
properties of premixed flame fronts. The corresponding description of the limits of 
stability is in good qualitative agreement with the existing experimental data 
(Markstein 1951,1964; Markstein & Somers 1953). As for the quantitative comparison 
with these data, the main defect of the model is the use of an over-simplified chemical 
kinetic description, which impairs the prediction with an insufficient precision of the 
effective Lewis number L corresponding to each composition of the actual reactive 
mixture used in the experiments. Nevertheless, one can obtain a good idea of the order 
of magnitude of this number by looking at the values of the different diffusivities of 
the reactive mixture. Let us for example consider the case of a propan-xygen 
mixture highly diluted with nitrogen. At the normal conditions, the thermal 
diffusivity of the nitrogen is D,, x 0.19 cmz/s and the binary molecular diffusion 
coefficients of propane and oxygen in nitrogen are D(C,H,,N,) x 0.11 cmz/s and 
D(O,,N,) x 022 cm2/s respectively (Fristrom & Westenberg (1965)). As the activ- 
ation energy E of propane is about 55 kcal/mol (Kaskan 1957), p is close to 15 for 
the flame temperature of 1500 K, and the corresponding values of the quantity 
1 = p(1- 1/L) appearing in (14) are Z(C,H,) = 6.3 and l (0 , )  = -2.4. 

Thus, when the composition varies from lean to rich, one can expect that  the 
effective value of 1 = p(1- 1/L) appearing in the expression (25) for Y / d  varies from 
6.3 to - 2 4 .  I n  fact one can expect that, for most of the time, the influence of the 
chemical kinetics enhances the stability of the fronts and causes a slight shift of these 
limits towards higher values. This is due to the fact that the extremely mobile 
intermediate species involved in chemical reaction attain, as a rule, maximum 
concentration at the reaction zone. Since the flame velocity increases with their 
concentration, the molecular diffusivity of these species is expected to reinforce the 
stabilizing influence of the heat diffusion. Nevertheless, for the usual hydrocarbons, 
to attain experimental values of 1 larger than 10 seems unlikely. Thus the results 
shown in figure 2 demonstrate that freely propagating planar flames with a laminar 
velocity uL larger than 17 cm/s cannot be stabilized in a uniformflow. On the other hand, 
it seems very difficult to encounter values of 1 smaller than - 3 (except for hydrogen). 
Hence our theory predicts that  slow flames with laminar velocity uL smaller than 
5 cm/s should be stable for all compositions. Thus, the instability threshold should be 
experimentally observable between 5 cm/s < uL < 17 cm/s, at a fuel-rich composition for 
the lower values of uL and at a lean composition for higher tralues of uL. Furthermore, 
independently of chemical-kinetics effects, the size of cells a t  the bifurcation is 
predicted by (39) and (42) to vary from 0.5 cm to 3.5 cm, as the square of the laminar 
velocity of propagation u:. It must be emphasized that these considerations apply only 
to the size of the cells at the critical threshold of the instability, and not to the 
evolution of this size by the nonlinear effects occurring beyond the threshold. 

It should be also noted that for the rich mixtures close to the instability threshold, 
the temperature is predicted by (29’) and (19) to be higher in the parts of the front 
concave towards the burnt gases. According to the result of our analysis, this is 
particularly the case at  the threshold for cell formation on flame fronts with slow 
enough laminar velocity (uL < 12 cm/s, cf. figure 2). 

I n  the usual hydrocarbon mixtures, highly diluted with nitrogen, these low 
velocities correspond to situations that are not very far from the thermal-extinction 
limit ( N 8 cm/s). According to Joulin & Clavin (1979), one may expect that  close to 
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t,he extinction limit, the above predictions could be affected by the heat losses. The 
model used in the present paper can be made more realistic by introducing such effects 
as the influence of heat losses, the temperature variation of the diffusivities, or a more 
detailed kinetic scheme. The corresponding development is tractable and will be 
published in t'hc near fut'ure (see Clavin & Garcia 1982: Cflavin & Nicoli 1983). We 
have deliberately omitted such complications here, in order to emphasize the 
important basic phenomena. 

In  conclusion, when t'he expansion of the gas is taken into account in adiabatic 
flames, the diffusive effects appear to be stabilizing ( Y / d ,  k ,  > 0) a t  all compositions 
for the usual hydrocarbons, and thus cannot be responsible for the cellular structures 
of the planar fronts. Nevertheless, very light limiting components such as hydrogen 
require the more-detailed study quoted above. An exception is also st'ill possible for 
very heavy limiting components, which can possibly produce, as in solid combustion, 
spinning waves (cf. the discussion in $4). Apart from these extreme caws, which are 
beyond the scope of the present study, the cellular structures appearing on planar 
fronts of usual hydrocarbon adiabatic flames are shown to be described by the 
competition between the hydrodynamical instability and two st,abilizing phenomena : 
acceleration due to gravity and diffusive effects. The corresponding t'hreshold is 
predicted to  be experimentally observable for ordinary hydrocarbon flames propa- 
gating downwards with a flame speed between 5 cm/s and 17 cm/s. 

The authors are greatly indebted to G. Searby, A. Liiian and A. K. Oppenheim for 
fruitful discussions. This work was supported in part by the C.N.R.S. under A.T.P. 
3966 and by the D.R.E.T. under grant no. 801434. 
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